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NOTATION

a Parameter related to NACA camber mean line

aI Parameter related to cavity length

bI  Parameter related to cavity detachment point

CLam Measured fully wetted flow lift slope

c Chord length

CO, cl Constants in formula for complex potential

citi Design lift coefficient

D Total drag

Do  Drag due to fully wetted flow

DI  Drag due to cavitation

Im Denotes imaginary part of

L Total lift

Lo  Lift due to fully wetted flow

L l  Lift due to cavitation

I Cavity length

qo Local flow speed due to fully wetted flow

qj Local flow speed due to cavitation

qc Cavity speed

qo* Fully wetted velocity at the position of minimum pressure

Re Denotes real part of

V



U Free Stream speed

1u, v Velocity component in x, y coordinates

V Cavity volume

xy Horizontal and vertical ordinates in physical plane

xd Chordwise position of cavity detachment

xm Chordwise position of fully wetted pressure minimum

z Complex variable, x + iy

a Angle of attack

6 Cavity wake thickness

Complex variable, + in

,fn Horizontal and vertical ordinates in transformed c-plane

60  Local fully wetted flow angle

al Local flow angle due to cavitation

P Fluid density

.o Cavitation number

r Circulation

rideal Ideal-flow circulation

*Total scalar potential

00 Scalar potential due to fully wetted flow

01 Scalar potential due to cavitation

7 Complex potential, * + i4
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4' Stream function

Complex velocity

T; Complex velocity due to fully wetted flow

T1 Complex velocity due to cavitation

W Hodograph variable, In T'

Hodograph variable, In due to fully wetted flow

WI Hodograph variable, In T! due to cavitation
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ABSTRACT

A practical approach for predicting partially cavi-
tating flow characteristics of foil sections is presented.
The method takes into account indirectly the viscous flow
effects and the interaction between the fully wetted and
perturbed cavitating flows. The partially cavitating flow
characteristics are found to be sensitive to variations in
the angle of attack, camber, thickness, and the thickness
distribution. Some comparisons between the calculated and
measured cavity lengths are made, and the results are
generally in good agreement. Further developments needed in
the future are also discussed.

ADMINISTRATIVE INFORMATION

The work reported herein was supported by the General Hydromechanics

Research Program under Task Area SR0230101 and Work Unit 1522-025.

INTRODUCTION

There is concern with avoiding problems and reducing the likelihood of

propeller-induced hull vibration, noise, and blade erosion on Navy ships. The

unsteady surface pressure excitation and local flow instability responsible for

these problems are associated with blade sheet cavity geometry and cavity dynam-

ics. Reliable computational tools for the analysis of propeller blade sheet

cavitation would be useful for assessments of given propeller/wake/hull arrange-

ments and for guidance of new propeller geometries intended to keep blade cavi-

tation and excitation levels under some control.

Realistic estimates of hull surface pressure excitation produced by unsteady

cavity volume variation depend on accurate definition of cavity geometry. Tulin

and Hsul, 2* have observed, for instance, that predictions of partially cavitating

flows about a lifting surface are very much influenced by the surface velocity

distributions calculated for fully wetted flows about the foil sections and by the

conditions used for the cavity closure. Linearized theories for lifting foils

all predict an infinite suction-pressure peak at the foil leading edge, with an

inverse square root singular behavior. This propagates difficulties into the

analysis of the cavitating flow over the foil, especially for the cavity

geometry. Linear cavity flow theories show inaccurate cavity predictions for

*References are listed on page 11.
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the location of the sheet cavity leading edge, the sensitivity of the cavity

extent and cavity thickness to changes in the foil thickness, and foil angle of

attack. It has also been shown2 that details of the cavity-closure condition can

affect the overall hysteresis-like behavior of unsteady leading edge cavitation.

Examples of linearized analysis of two-dimensional, partially cavitating

flows about lifting foils and some applications of the results to three-

dimensional propeller blade problems are found in References 3 through 9.

Generally, the results of the complete propeller analysis schemes are fairly good

in that the principle features of the steady and unsteady blade cavitation and

propeller performance are at least represented in the predictions.

There are, however, persistent difficulties with the cavitating flow aspects

of the available calculation schemes, leading to a degree of unreliability in

the predictions. As an example, consider the Massachusetts Institute of

Technology unsteady cavitating propeller analysis program developed by Lee,6 and

known by the acronym PUF-3. When applied to high speed ships (-30 knots) the usual

prediction for blade cavitation from this computation scheme typically shows

excessive cavity length over the outer blade region, compared with observations.

Recently, a nonlinear numerical method for the analysis of two-dimensional,

partially cavitating lifting foils has been developed by Uhlman1 0 based on the

distribution of line-vortex elements on the boundaries of the foil and cavity.

This important work has been useful in (a) illustrating the differences in trends
between the linear and nonlinear predictions for crucial cavity flow features, and

(b) showing qualitative agreement with the existing results of Tulin and Hsu.

Unfortunately, the method requires very large computation time and cost, involving

large numbers of boundary elements and many iterations to arrive at very

slowly converging solutions. It does not appear that such a large computational

effort can be tolerated at the present time inside a large-scale three-

dimensional calculation scheme for an entire propeller.

An important building block for the eventual realistic analysis of complete

propeller blade flow is a reliable yet (fast running) efficient computer program

for the prediction of partial chord length cavitation and the hydrodynamic loads

developed on two-dimensional foil sections operating in high speed steady and

unsteady inflow conditions. The present work describes results for an approach

that holds great promise for both accuracy and calculation speed.

2
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With the fully wetted flow asamed known, a partially cavitating flow

theory was developed by Tulin and Hsu. This theory offers the following advan-

tages: (a) it deals with the effect of leading edge radius; (b) it can be

applied as a two-dimensional perturbation to a known three-dimensional flow.

Some salient features of Tulin-Hsu theory are outlined.

In the original treatment of Tulin and Hsu, the cavity is assumed to be

detached from the leading edge, and the circulation of the fully wetted flow is

taken to be the ideal-flow value. Both of these assumptions are not generally

realized in practice. The theory of Tulin-Hsu is modified here to account for

some of the real flow effects, and is used to predict the cavitation performance

of various NACA (National Advisory Committee for Aeronautics) sections. Some

comparisons between the calculated and measured cavity lengths are made, and the

results are found to be generally in good agreement. Further developments

needed in the future are also discussed.

OUTLINE OF TULIN-HSU THEORY

Consider two-dimensional inviscid flows with small regions of cavitation and

define:

T = (Q/U) + i(/U) (the complex potential) (1)

d'F/dz = = = (u/U) - i(v/U) (the complex velocity) (2)

q -0e (no cavitation) (3)

= = qe~ e  (4 )

represents the effect of cavitation, so that

-=(5)
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if no cavitation occurs. The flow in the physical and complex potential plane

is shown in Figure 1. The problem, as posed, utilizes the single spiral vortex

model for cavity termination.

For the solution, it is useful to definc the function:

W= 0 + Wi = ln q0 - ie 0 + ln ql - ie 1  (6)

The o, representing the contribution from the fully-wetted flow, is assumed to

be known. The problem is then reduced to that of finding w I with the boundary

conditions:

Re(l)= in q i = n (qc/qo) B<'<qD (7)

where qc - / (a = cavitation number) and

0 +

Im(W 1 ) = 0 <0<0E (8)

OA<0<0E ' = 0

The conditions at infinity are:

Re(W I) = 0 (9)

Im( l ) = 0 (10)

The approximate cavity closure condition is:

Im/ 1 d = (D1/pU2) = c (11)

where DI is the cavity drag.

4



The problem as formulated may be greatly simplified with the aid of th3

conformal transformation:

= 1 ('P+14 E (12)

or

/ 2 2a2 (13)

where

,= V/IE4D)1(14)

which maps the complex potential plane onto the c-half plane as shown in

Figure 2.

The associated boundary conditions, conditions at infinity, and the closure

condition are given respectively by:

Re(Ck) ln(q /q) -1<E<-b 1  (15)

IM (CO1  0 x<<1(16)

Re(&(-ia1) 0 (17)

IM(0i1(-ia 1) = 0 (18)

IMP (Vd~/dC)d1 = (DiPU 2 ~ 6 C(19)
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The appropriate solution of the mixed boundary value problem in then given

by:

7[I  0 / d+cCn (20)

The value of al is assumed specified, which is equivalent in specifying the

cavity length. The constants co, cl, and 0 are determined from Equations (17),

(18), and (19). Note that DI in Equation (19) is not known a priori; a satisfac-

tory solution can, however, be obtained in two or three iterations.

For a first approximation, the lift and drag due to cavitation may be

expressed as:

1 = l(dT/dC)d (21)

and the cavity volume is given by:

Vff -Im fl (dT/dC)d (22)

SOME PRACTICAL APPLICATIONS

The cavitating flow perturbation w 1, as seen in Equation (20), depends only

upon the local fully wetted velocity distribution, qo, and cavity detachment

point. In the original treatment of Tulin and Hsu, the cavity is assumed to

detach from the leading edge (bl = 0), and the fully wetted velocity distribu-

tion is assumed to be determined by perfect fluid theory; such assumptions may

not be realized in practice.

The velocity distribution is generally modified by the viscous boundary

layer and wake. The effect of viscous wake on the circulation defect, according

to Spence and Beasley,'1 may be approximated by:

r = (LIFT/pU) = rideal[ O. 4 (52 3)
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where D - Do + D1 - total drag and c - chord length. The boundary layer effect

on circulation depends on shapes and transition positions of foils and is quite

cumbersome to estimate. In the present application, measured lift-curve slopes

will be used for estimating fully wetted velocity distributions. For a first

approximation, Equation (23) is also utilized to account for some of the

interactions between the fully wetted and the perturbed cavitating flows.'

Cavitation inception at high speeds generally occurs at the position of

minimum pressure. In the present approach, the cavity is assumed to detach at

the point where the fully wetted pressure is minimum. The exact location of

detachment is, of course, also dependent on fluid properties, ambient flow con-

ditions, and transition positions. Such influences can be substantial in

laboratory studies when test Reynolds numbers are low.

In the following, the partially cavitating flow characteristics of various

NACA sections are analyzed. For such sections, ideal-flow values of the fully

wetted velocity distributions are tabulated in Appendices I and II of Reference

12. In the first iteration, the value of DI is taken to be zero. For the sub-

sequent iterations, the value of D I is approximated by:

DI = LOc -l/q0)] (24)

where Lo = fully wetted lift, qo* = fully wetted velocity at the position of

minimum pressure, and a - angle of attack. Wind tunnel measured values of lift

curve slope at chord Reynolds number = 6 x 106 (presented in Figure 57 of

Reference 12) are used to correct the ideal fully wetted velocity distributions.

Although the calculated results can only be applied strictly to the cases in

which the chord Reynolds numbers are close to 6 x 106; such results are believed

to be approximately valid for higher Reynolds numbers (up to about 108); the

correction due to the variation of Reynolds number in the ranges of 107 - 108 is

probably not significant. Extensive numerical calculations have been made;

however, only selective results of salient interest are presented here.

In Figures 3 and 4, the variations of cavity length and volume with angles

of attack and cavitation numbers for NACA 66-006 section are shown. The length

and volume of the cavity, for a given a/c, generally increase with increasing

angle of attack. The cavity length and cavity volume for cambered NACA

7
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66-006 with a - 1.0 meanline, and a - 40 are given in Figures 5 and 6. The

effect of increasing design camber is to increase the length and volume of the

cavity. Some of the partially cavitating flow characteristics for NACA 66-006,

NACA 66-008, NACA 66-010, and NACA 661-O12 sections are shown in Figures 7 and

8. The length and volume of the cavity, in general, decrease rapidly with

increasing foil thickness. The partially cavitating flow characteristics are

also found to depend on thickness distributions. Shown in Figures 9 and 10 are

some calculated results for NACA 66-006, NACA 63-006, and NACA 0006 sections

with a - 40. The NACA 0006 section, which has leading edge radius - 0.004c pro-

duces smaller cavity lengths and cavity volumes than those produced by the NACA

63-006 and NACA 66-006 sections for a/o <0.05; but for Q/0 >0.05, the NACA 0006

section produces larger cavity lengths and cavity volumes than those of NACA

63-006 and NACA 66-006 sections. The leading edge radii of NACA 63-006 and NACA

66-006 are 0.00297c and 0.00223c, respectively.

Some comparisons between the calculated and the measured cavity lengths are

shown in Figures It through 14. The foils for which systematic experimental

observations are available include: NACA 4412 (Kermeen),13 NACA 661-012

(Kermeen),14 10.5Z Joukowsky section (Shen and Peterson), 15 NACA 64A006

(McCullough and Gault).1 6 In analyzing NACA 4412, NACA 661-012, and NACA 64A006

sections, measured lift curve slopes for the fully wetted flow are used for the

first iteration. For the Joukowsky section, the value of 2W for lift-curve

slope is used for the calculations. The data of McCullough and Gault are wind

tunnel measurements for leading edge separation, the cavitation numbers and

cavity lengths are inferred from pressure coefficient measurements (from Figure

3 of Reference 16). The agreement between theory and measurements is in general

good. The results lend credence to both the present theoretical development and

method of calculation.

DISCUSSION

The partially cavitating flow characteristics of hydrofoil sections are

found to be sensitive to variations of angle of attack, camber, thickness and

thickness distribution.

Foil section thickness has an important infftence. For a given M/o, the

cavity extent (length) generally decreases with increasing thickness ratio,

8



as seen in Figure 7. The effect of thickness distribution and leading edge

radius is somewhat more complicated. In Figure 9, with a comparison at the same

thickness ratio, the NACA 00xx sections (with larger leading edge radius than

NACA 6-series sections) produce shorter cavities for small values of c/0 <0.05.

For larger values of a/o, NACA 6-series sections generally produce the shorter

cavities. About the same trend holds for the sectional cavity volume. Thus,

depending on the operating ranges of a/0, the choice of foil section for the

least amount of partial cavitation can vary considerably.

The theory presented herein takes into account the proper pressure distribu-

tion at the leading edge of the noncavitating foil flow. It is substantially dif-

ferent from that in the linearized theories. Some comparisons between results of

the present calculations and results of linear theory are displayed in Figure 15

for NACA 16-series sections. In these calculations, the value of 2W is used for

the lift curve slope. It is seen that the linear theory provides substantial

misrepresentation of the effect of section thickness on cavity extent. Linear

theory predicts an increase in cavity length with increasing thickness ratio,

contrary to the correct trend predicted by the present analysis.

By using measured values of lift-curve slope for fully wetted flow, the pre-

sent results also take into account indirectly some of the viscous flow

effects. Example variations of computed cavity lengths associated with changes

in lift curve slopes for NACA 66-006 section are given in Figure 16, and are seen

to be substantial. Lift reduction due to viscosity depends on foil trailing edge

angles and may not be small, especially for chord Reynolds number <106. In

these cases, the viscous-flow effects on the partially cavitating flow charac-

teristics can become very important.

The present theory also accounts for some of the redurtion in circulation

due to the effect of cavity wake. This is accomplished by using Equations (23)

and (24). The interaction effect involves a reduction of foil lift that is caused

by the flow retardation associated with the cavity drag. It can be substantial

if the cavity drag is large. In Figure 17, the magnitude of this influence is

indicated as the variation of cavity length for the NACA 66-006 section with and

without the interaction effect included.

Flow characteristics of partially cavitating foils vary also with the

positions of cavity detachment and cavity closure conditions. Variations of

9

-------- -------



cavity length with different detachment points are given, for example, in Figure

18 for the NACA 66-006 section at a 40 incidence. This compares the results for

detachment at the leading edge (xd 0) with those using the minimum pressure

point (xd - xm) for fully wetted flow. In the present example the value of

X m (-'! 0.00026) is quite small. Values of xm are much larger for thicker sec-

tions with smaller angles of attack, and the effect of cavity detachment posi-

tions on the partially cavitating flows can be substantial. In Figure 19, the

predicted cavity length variations due to different closure conditions for NACA

66-006 section are displayed, and are shown to be significant. Since the cavity

closure condition may vary rapidly in unsteady flows, it can have a very impor-

tant effect on time-varying properties of partially cavitating flows.

CONCLUSIONS AND RECOMMENDATIONS

The present approach permits an efficient and fast-running solution to the

partially cavitating flow problem to be carried out in terms of a known fully wetted

flow velocity distribution. This analysis can be readily applied to unsteady flows

if the time rate of change is not too rapid. The perturbed cavitating flow can

thus be analyzed at any given time based upon the instantaneous values of angle of

attack. A similar approach may also be applied to unsteady three-dimensional flows

if the fully wetted flow does not vary too rapidly in the spanwise direction.

Further work should be carried out along several lines to exploit the present

successful analysis of partially cavitating realistic-foil sections. (1) The

steady results should be extended to include unsteady inflow variations of arbitrary

frequency in order to cover cases of rapid-time variability. (2) With the two-

dimensional analysis complete for steady and unsteady cases, the results should

be applied to make a comprehensive study on the influence of section shape on

performance features of partially cavitating foils. New foil shapes will be

generated that have certain desirable features for use as propeller blade sec-

tions. Examples of sought-after properties might include: the best lift-to-

drag performance for given cavity length and/or volume; the least cavity length

and volume for given foil lift; and the least inherent unstable cavity behavior

under typical unsteady conditions. (3) The present nonlinear sectional flow

analysis approach should be incorporated into a global lifting-surface analysis

scheme for unsteady propeller performance.

10
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Figure 3 - Effect of Angle of Attack on Cavity Length for NACA 66-006 Section
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Figure 10 - Effect of Thickness Distribution on Cavity Volume, a = 40
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